

A new public-key crypto system via Mersenne numbers

Divesh Aggarwal

joint work with Antoine Joux, Anupam Prakash and Miklos Santha

Public-key cryptography

- Introduced by Diffie and Hellman in [DH76]
- Many candidates over the years
- The quest in the recent years has shifted to advanced primitives
- In this work, we propose an arguably simpler PKC scheme.
 - We also believe it is secure against quantum attacks.

Mersenne cryptosystem

- Belongs to the **Ring** and **Noise** family with
 - NTRU
 - Code-based crypto
 - Ring LWE based crypto
- With a different **Ring**: $\mathbb{Z}/p\mathbb{Z}$ (p Mersenne prime), and
- a different **Noise**: Hamming weight mod p .

Mersenne cryptosystem

Mersenne primes: They are primes of the form $p=2^n-1$, where n is a prime, and is named after Marin Mersenne, a French mathematician, who studied them in the early 17th century. (Wikipedia)

Main advantage of the cryptosystem: Simplicity

Mersenne ring and distance

- Ring $\mathbb{Z}/p\mathbb{Z}$
- p a Mersenne prime, i.e., $2^n - 1$

Let :

- $R_p(x)$ = rep of x in $[0, p-1]$
- $HW(x)$ = num of 1 in binary rep of $x \bmod p$

Some properties of arithmetic mod p

1) $HW(X+Y) \leq HW(X) + HW(Y)$

$$\begin{array}{r} 1101010\textcolor{green}{0}111001 \\ + 0000000000\textcolor{green}{1}000 \\ \hline = 1101010\textcolor{green}{1}000001 \end{array}$$

2) For all i , $HW(X \cdot 2^i) = HW(X)$

3) $HW(XY) \leq HW(X) \times HW(Y)$

Induction

4) $HW(-X) = n - HW(X)$

Warm Up
Single bit version

Hard problem

$$p = 2^n - 1, \quad h \ll n$$

f, g are numbers mod p with few ($< h$) 1s in binary rep.

$$H = f/g \pmod{p}$$

Assumption: Given H , obtain f, g .

Single bit version

$H = f/g \pmod{p}$, $PK = H$, $SK = g$
(f and g containing few 1s, i.e. $\leq h$)

Encryption

a and b with few 1s

$$C_0 = \text{Enc}(0) = (aH + b)$$

$$C_1 = \text{Enc}(1) = -(aH + b)$$

Decryption

$$gC = \pm [a f + b g]$$

Compute $\text{HW}(gC)$

Small $\Rightarrow 0$

Large $\Rightarrow 1$

Toy Example

$p = 2^{31} - 1 = 2147483647 = 0x7FFFFFFF$
 $H/f/g = 0x8002000/0x200000008$
 $= 0x42E8BE0F$

Encryption

$a = 0x80800$
 $b = 0x400000080$
 $C = Enc(0) = (a \cdot H + b)$
 $= 0x766CAB3A$

Decryption

$gC = 0x110084A6$
 $HW(gC) = 8 (< 15) \Rightarrow 0$

Correctness of decryption

For correctness, we need $n > 4 h^2$

$$g(ah+b) \equiv af+bg \pmod{p}$$

$$\begin{aligned} \text{HW}(Rp(af+bg)) &\leq \text{HW}(a)\text{HW}(f)+\text{HW}(b)\text{HW}(g) \\ &\leq 2 h^2 \leq n/2 \end{aligned}$$

$$\begin{aligned} \text{HW}(Rp(-(af+bg))) &= n - \text{HW}(Rp(af+bg)) \\ &\geq n/2 \end{aligned}$$

Multi-bit version
underlying encryption

Change public/private key

$$H = f/g \pmod{p} \Leftrightarrow f(-1/H) + g = 0 \pmod{p}$$

i.e. $f R + g = 0$

$$T = f R + g \pmod{p} \quad (R \text{ fully random})$$

Mersenne (basic multi-bit encryption)

$$T = fR + g \pmod{p} \quad (R \text{ fully random})$$

Encryption

$$C_1 = a R + b_1$$

$$C_2 = a T + b_2$$

$$Z = C_2 \oplus E(m)$$

$$\text{Enc}(m) = (C_1, Z)$$

Decryption of (C_1, Z)

$$C_2' = f C_1$$

$$m = D(C_2' \oplus Z)$$

E and D : Error correction code

Multi-bit encryption

Analysis of decryption

$$C_2 = aT + b_2 = a fR + (a g + b_2)$$

$$C_2' = f C_1 = f(aR + b_1) = a fR + b_1 f$$

$$HW(C_2 \oplus C_2') \leq Hdist(C_2, a fR) + Hdist(C_2', a fR)$$

Thus $\text{Dec}(\text{Enc}(m)) \oplus \text{small error} = m$

Heuristic : Error is well distributed

Allows to use simple repetition code

Analysis of decryption

LEMMA: Let U be a random n -bit string and let x be an n -bit string of Hamming weight h . Then

$$\Pr[H\text{dist}(U, U + x) > 2h(1 + \epsilon)] < \text{negligible}$$

EXAMPLE:

$$\begin{aligned} & 1100101010101110101110101000111110100101 \\ & + 00000100000001000100000000100010000100010 \end{aligned}$$

$$1101001010110111101110101101001111000111$$

Choice of error-correcting code

-Thus, the total number of errors we expect is at most

$$e = 2(h^2 + h)$$

-We need an ECC correcting e out of n errors

-Can use Reed Muller codes, and $n = O(h^2)$

-The number e is clearly an overestimate of the no. of errors in practice

-Also, we expect the errors to be distributed randomly

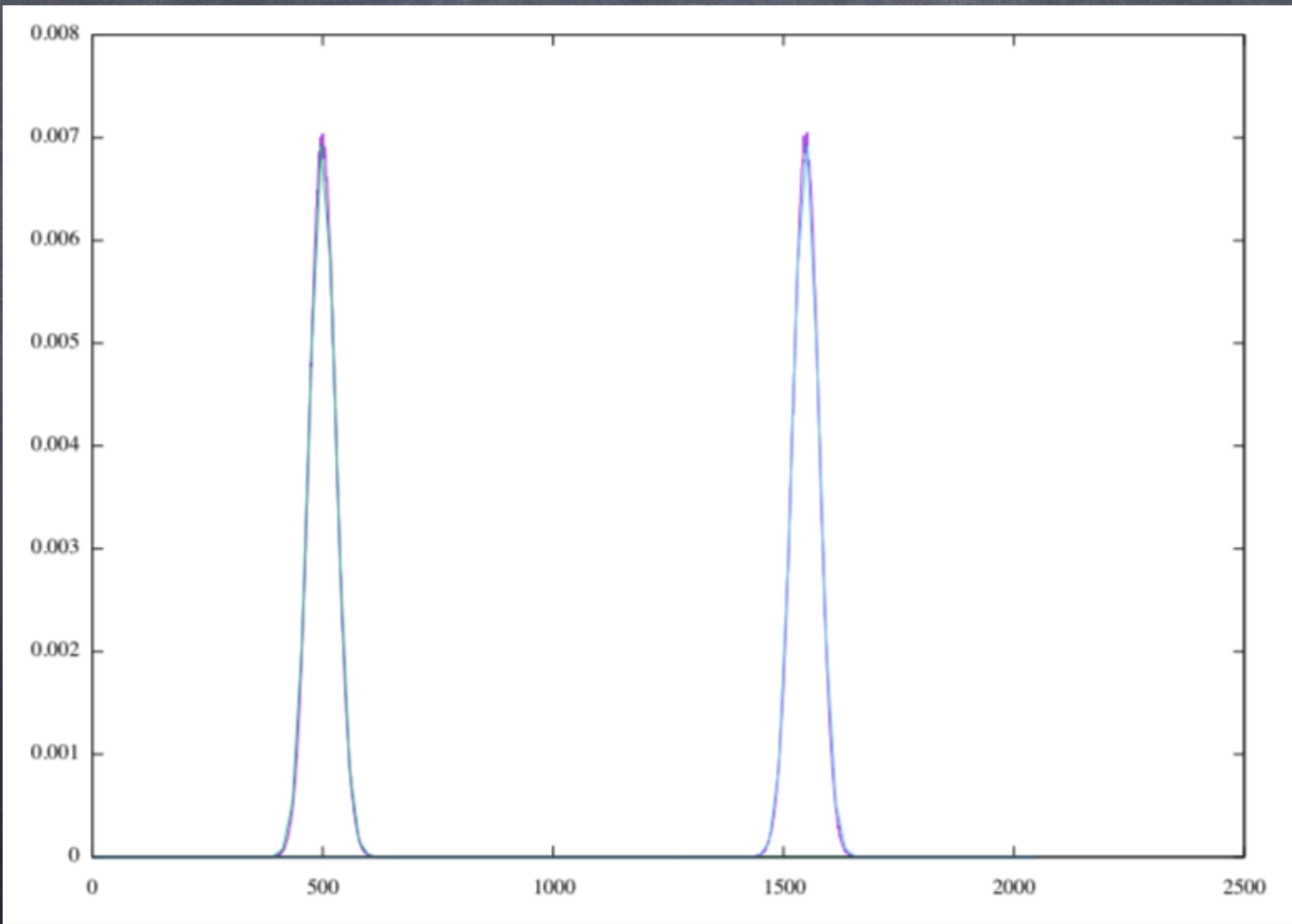
Recommended parameters

$n = 756839$

Low HW parameter $k=256$

Encode 256 bits:
with 2048-repetition coding

Heuristics



Hard Problem

Distinguish

Hidden low weight

$(R_1, R_2, aR_1+b_1, a R_2+b_2)$

a, b_1, b_2 with low HW

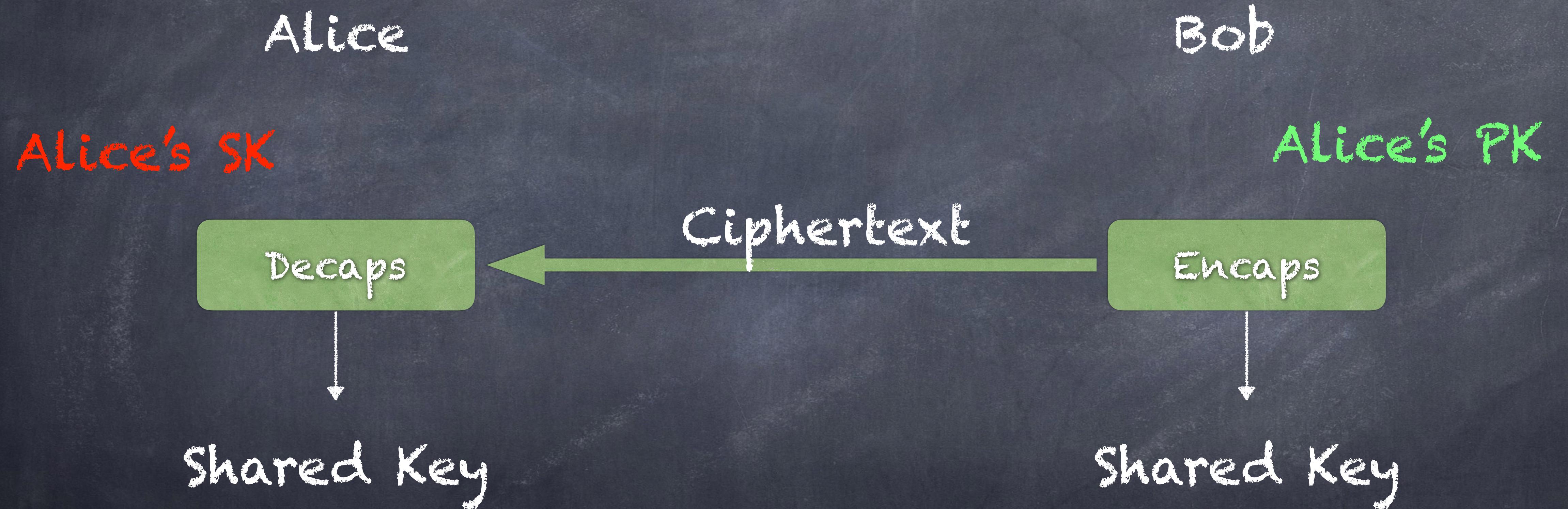
Random tuple

(R_1, R_2, R_3, R_4)

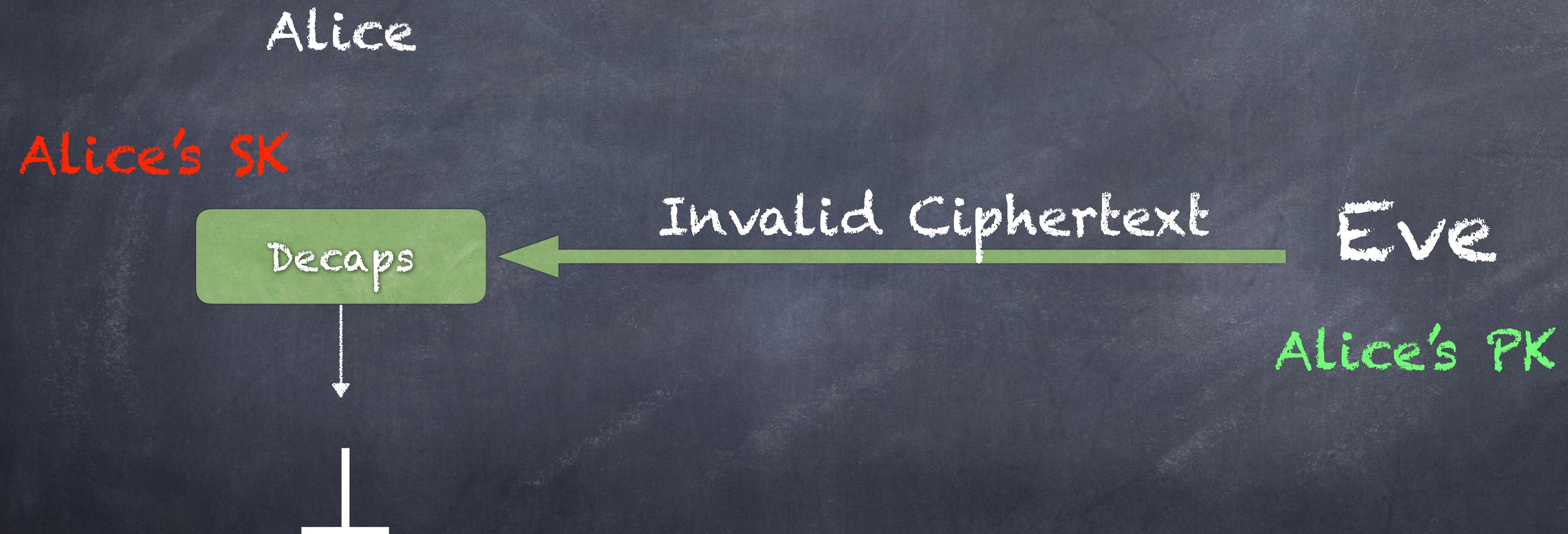
Multi-bit Mersenne

CCA-KEM

CCA-KEM



CCA-KEM under active attack



Mersenne KEM encaps (with CCA security)

s = Random seed

- 1) Initialize PRG from s
- 2) Produce pseudo random shared secret
- 3) Run basic encryption of s
(getting a, b_1, b_2 from PRG)
- 4) Output (C_1, z)

Mersenne KEM decaps (with CCA security)

- 1) Run basic decryption on (C_1, Z)
- 2) Re-encapsulate from s
- 3) Compare and Output
 - a) Shared secret
 - b) or \perp

Best Known attacks [BCGN17, BDJW18] (for proposed params)

Trivial : $\binom{N}{k}$

Best Classical : At least 2^{2k}

Best Quantum : At least 2^k

Future Work

- Cryptanalysis
- Improve efficiency without compromising security

Thank You